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Abstrac t  

An explicit parametrization algorithm is reported for 
the simplest class of triply periodic minimal surfaces 
(the 'regular' class) for which the Weierstrass function 
specifying the complex plane representation has a 
simple product form. As the Gauss map links triply 
periodic minimal surfaces with spherical tessellations, 
the set of Schwarz triangular tilings of the sphere is 
used as the basis of an exhaustive listing of all such 
possible branch-point distributions, and hence sur- 
faces, in this class. The symmetry and geometry of 
the resulting surfaces are determined by the locations 
and orders of these branch points. 

I. In troduct ion  

Minimal surfaces are the simplest members of the 
family of hyperbolic surfaces, which include all 
saddle-shaped (anticlastic) interfaces. If the surface 
is minimal, its principal curvatures are equal in mag- 
nitude and opposite in sign at all points on the surface. 
In contrast to the more familiar elliptic and parabolic 
geometries (which include spheres, ellipsoids, cylin- 
ders and planes*), a single hyperbolic surface may 
partition space into two continuous convoluted 
networks and the resulting geometry is known as a 
bicontinuous structure. The most symmetric examples 
of these structures are translationally ordered 
minimal surfaces. Such structures are to be found in 
molecular assemblies: thermotropic and lyotropic 

* In fact, the plane can be classified as a minimal surface, albeit 
an uninteresting case. 

liquid crystalline phases and block copolymer phases 
and in the atomic arrays in microporous-framework 
alumino-silicates known as zeolites. At larger length 
scales these surfaces describe well the ultrastructure 
of biological mineral skeletons in some sea-urchins 
(Nissen, 1969). These interfaces are now of general 
interest to physicists, chemists and biologists 
(Dubois-Violette & Pansu, 1990). 

Explicit mathematical realization of the surfaces 
in bicontinuous arrays is most simple for infinite 
(triply) periodic minimal surfaces (IPMS). Other 
hyperbolic interfaces (such as triply periodic con- 
stant-mean-curvature surfaces) can be related to their 
associated IPMS provided the topology of the inter- 
face is sufficiently complex (Anderson, Nitsche, Davis 
& Scriven, 1990). Five IPMS were discovered last 
century by Riemann and the school of Schwarz (see 
Riemann, 1953; Schwarz, 1890; Neovius, 1883). In 
the 1960s, Alan Schoen derived a number of new 
examples using soap films (Schoen, 1970); these cases 
have recently been confirmed by Karcher (1989). A 
large number of IPMS have also been found by 
Fischer & Koch (1989) and Koch & Fischer (1990) 
from crystallographic considerations. 

In a series of three papers, we present techniques 
for systematic derivation and mathematical charac- 
terization of the simplest class of IPMS (which we 
shall term the 'regular' class), as well as some 
examples and general techniques for IPMS within 
the more general 'irregular' class. We characterize the 
various IPMS by the geometry of a Fliichenstiick of 
each surface, from which the infinite surface can be 
generated by reflection or rotation operations over 
the surface boundary. 
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To derive these surfaces systematically and exhaus- 
tively, we resort to the Weierstrass parametrization 
of minimal surfaces, which defines the Cartesian 
coordinates of the surface (its global embedding in 
R 3) by path integrals within the complex plane, which 
is the natural parameter domain for minimal surfaces. 
The 'regular" class admits of a simple closed form for 
the (complex) Weierstrass function generating the 
minimal surface, in terms of the branch-point posi- 
tions and orders. The geometric and topological con- 
straints of translational periodicity impose restric- 
tions on these specifying quantities, thus permitting 
a complete listing of all IPMS in this class. In this 
paper we shall establish the mathematical ground- 
work for this parametrization scheme and derive the 
set of spherical tessellations which are the basis for 
the construction of these IPMS. 

2. The Weierstrass representation of  minimal surfaces 

The study of minimal surfaces is greatly facilitated 
by the elegant parametrization due to Weierstrass, 
resulting from transformation of the surface into the 
complex plane by composition of two simple maps. 
The first is the Gauss map v, under which the image 
of a point (x, y, z) of a surface F(x, y, z) = 0 is 

(x', y', z') = V F/IV FI 

[where XT=(0/0x, 0/0y, 0/az) is the gradient 
operator], the point of intersection of the surface 
normal vector at (x, y, z) with the unit sphere centred 
there. The second is stereographic projection cr of 
this sphere coordinate to the point 

to = x ' /  ( 1 -  z') + iy'/ ( 1 -  z') 

) map ~ 

Stereographic 1 
projection T 

Fig. 1. The mapping of minimal surfaces into the complex plane. 
A point P(x, y, z) on the surface (in R 3) is mapped via its normal 
vector n onto the unit sphere [ P'(x', y', z')] (the Gauss mapping).  
The sphere is then imaged onto the entire complex plane under 
stereographic projection, so that the complex coordinates of the 
point P are P"(Re to, Im to). 

in the complex plane C (Fig. 1). The composite map, 
o-o v, conformally maps the neighbourhood of any 
point of non-zero Gaussian curvature on the surface 
to a simply connected region of C, on which its inverse 

= v-~ o tr-I was found by Weierstrass to be of the 
general form 

x -- Re ~ ( 1 - to,2) R (to') do)' 
to 

y = R e  ~ i(1 +to'2)R(to') dto ' (1) 
to 

z = Re ~ 2to'R(to') dto' 
to 

(Re refers to the real part of the integrals) for some 
complex function R(to) analytic in this region 
(Spivak, 1979). The Weierstrass function R(to) com- 
pletely specifies the first and second fundamental 
forms, and hence the differential geometry, of the 
surface. Most importantly, the Gaussian curvature of 
the surface at the point corresponding to to is 
(Nitsche, 1975) 

K = -4(1 + Itol2)-4lR(to)1-2. (2) 

The local description (1) may be extended beyond 
a particular minimal surface patch by analytic con- 
tinuation of the function R(to) in the complex plane. 
As noted above, toi is a singular point of the continu- 
ation if its image ~(to;) is a point of zero Gaussian 
curvature (called a flat point) of the suface, in the 
vicinity of which the inverse Gauss map u -~, and 
hence qb and R, is in general multivalued. Now the 
natural domain of (single-valued) definition of such 
a multivalued function R(to) is its Riemann surface 
over C, branched at {to;}. Hence, if the integration 
range is defined to be the Riemann surface of the 
Weierstrass function, equations (1) represent a global 
parametrization of the minimal surface. 

3. The Weierstrass function of an I P M S  

An IPMS is characterized by its fundamental unit, 
from which the entire surface is generated by transla- 
tion alone. As translation preserves normal directions, 
the surface is Gauss-mapped to an infinity of super- 
positions of the image of this unit. This image is the 
compact covering of the sphere corresponding to the 
Riemann surface of the Weierstrass function. The 
compactness of the Riemann surface over the unit 
sphere implies by a general result (Springer, 1957) 
that R(to) is an algebraic function. Hence, with s 
denoting the (finite) number of sheets comprising the 
Riemann surface, the Weierstrass function is the so- 
lution of the sth-degree polynomial equation 

aM(to)RM =0 (3/ 
M=0 

for some set of polynomial functions {aM(to)}~=o. 
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( a ) Local differential geometry 

The form of an algebraic function is dictated by 
its singularity structure, which is evident here from 
simple considerations of the local differential 
geometry of the surface. In particular, at a member 
of the finite set of fiat points on the fundamental unit 
of the IPMS, the angle of intersection of any two 
geodesics through this point is increased in the Gauss- 
map image by an integral factor (b + 1), termed the 
degree of the Gauss map at that point. This corre- 
sponds to a branch point of order b on the Riemann 
surface, at which the ( b +  1) jo ined branches of the 
Weierstrass function diverge, by virtue of (2), as 
a/(b+ 1) for some a coprime to ( b +  1). Hence, with 
{to~}~'=l denoting the distinct flat-point normal-vector 
images, on a sheet of the Riemann surface pinned at 
a branch point, order b~, under to~, the Weierstrass 
function has the asymptotic form 

R(to)-%(to- to , )  -a,/¢b,+'' , to ~ to, , (4) 

where y~ is some complex constant. Furthermore, the 
Gaussian curvature of the surface is everywhere finite, 
so (2) implies R(w) is non-zero on C. Considering 
the closed complex plane, a suitable coordinate rota- 
tion (if necessary) will ensure that the point at infinity 
(the north pole of the Riemann sphere) is not a 
flat-point image, since the flat points are isolated. 
Then, from (2), the s branches of the Weierstrass 
function exhibit the common asymptotic form 

g(w)  - )%to -4, to --> oo (5) 

(for some set of s constants yo~) and hence the func- 
tions are analytic at infinity, as required. 

( b ) Topology 

Additional conditions arise from the topological 
connection between the fundamental surface unit and 
its Gauss-map image, the Riemann surface over the 
unit sphere of the Weierstrass function (Hyde, 1989). 
The Euler characteristic of any compact connected 
orientable surface of genus g is given by 

X = 2 - 2 g .  

Now the Riemann-Hurwitz formula states that the 
Euler characteristic of a Riemann surface is simply 
specified by its number of sheets, s, and total branch 
point order, W, as (Hopf, 1983) 

g = 2s - W (6) 

or, equivalently, 

g =  1 - s + ½ W .  

Note that g is also the genus of the fundamental unit 
of the IPMS since the Gauss map is a homeomor- 
phism between the two surfaces. The degree, d, of 
this map is the algebraic proportion of the unit sphere 

covered by the image. The simple relation 

X=(1/27r )  ~ K OS (7) 
u n i t  

between the Euler characteristic and the integral cur- 
vature supplies the result (Hopf, 1983): 

d =½x. 

As the Gaussian curvature of a minimal surface is 
everywhere non-positive, the degree is the negative 
of the number of sheets of the Riemann surface, hence 

X = - 2 s  (8) 

or, equivalently, 

and (6) implies 

g = s + l  

W=4s. (9) 

4. Regular class of IPMS 

In this study, we limit detailed consideration to the 
class of IPMS for which each flat point has normal 
vector coincident only with those of other flat points 
exhibiting identical degeneracy on the surface. We 
refer to this as the 'regular'  class since only locally 
equivalent flat points are superposed in the Gauss 
map, ensuring that its image is a regular multiple 
covering of the unit sphere. Hence, the resulting 
branch-point structure characterizing the Riemann 
surface is extremely simple. Above any flat-point 
image to~ there lie only branch points of order b~ at 
which, by definition, b~ + 1 sheets are pinned. Hence 
there are s/(bi+l)  such points above to~ (implying 
that s is a multiple of each b~+l)  and the total 
branch-point order is 

W = s  ~ b,/(b,+l).  
i = 1  

Combining the above two equations, we get the con- 
straint on the set of branch-point orders 

bJ(b,+ 1)=4 .  (10) 
i = 1  

The implications of this assumption of 'regularity' 
on the Weierstrass function are addressed in the 
Appendix. It is found there that IPMS in this class 
possess the common Weierstrass functional form 

R(to)=exp(iO) [l (tO--tOi) -a'/(h'+l) (11) 
i = l  

[on scaling (x, y, z) with an appropriate real factor], 
subject to the constraint 

a,/(bi+ 1)=4 ,  (12) 
i = !  
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which on subtracting (10) implies 

(b , -a , ) / (b ,  + l)=O. 
i=l 

Now if ai > b~ for some i then the singularity of R(to) 
at to~ is non-integrable and the surface diverges to 
infinity. So true IPMS, for which the fundamental 
unit is compact, must satisfy a~-b~ for each i. The 
above equation then implies a; = bi for each i, thus 
the general form of the Weierstrass function of an 
IPMS in the 'regular' class is now 

R(to)=exp(iO) fl ( to-- toi)  -bi/(bi+l), (13) 
i = 1  

subject to the constraint (10). 
The isometric mapping of the minimal surface 

eftected by the constant factor exp (iO) is referred to 
as the Bonnet transformation (Schoen, 1970; Hyde 
& Andersson, 1985). Attention is restricted in the 
most part here to the 0 = 0 surface (or the 0 = 7r/2 
adjoint surface) in the family of Bonnet associates, 
given by the form 

R( to)=  fl (to_to,)-b/(b+,), ' . (14) 
i = l  

While one is analysing the surface in the vicinity of 
a specific point, it is convenient to choose a coordinate 
orientation for which this point is mapped to the 
north pole of the unit sphere, projected to infinity in 
the closed complex plane. If the point is a fiat point 
of the surface, say to, = oo, then the form (14) ceases 
to be appropriate and is replaced by 

n - - I  

R(to)=  1-I (to_to,)-b,/(b,+,), (15) 
i = l  

subject to the previous constraint (10). 
The above proof justifies the form (14) used by 

Lidin & Hyde (1987) to parametrize particular 
minimal surfaces in the 'regular'  class. Conversely, it 
also states that any such surface must correspond to 
a Weierstrass function of this form and hence to a 

b n . particular parameter set {to~, i}~=1 Hence (14) and 
(15) provide the basis of a systematic derivation of 
the 'regular'  class of IPMS and enable explicit par- 
ametrization of those known members whose 
existence has only been verified empirically or 
numerically. The question of existence of minimal 
surfaces within the regular class can be resolved by 
consideration of the branch-point distribution in the 
complex plane, {toi, bi}~=l, since this distribution 
completely determines the geometry of the minimal 
surface. 

In the following two sections, we investigate the 
nature of fixed-point symmetries in minimal surfaces 
by analysis of the complex Weierstrass function that 
describes the surface. 

5. Plane lines of curvature and linear asymptotes 
on I P M S  

To each IPMS there corresponds a Fla~henstiick (sur- 
face element) from which the entire surface is gener- 
ated by repeated analytic continuation across its 
boundaries. These bounding arcs may be taken to be 
geodesic curves of the surface. If a surface geodesic 
is a planar curve or straight line then it is referred to 
as a plane line of curvature or linear asymptote, respec- 
tively. These special geodesics are characteristic of 
reflection and rotation symmetries of a minimal sur- 
face. Plane lines of curvature lie in mirror planes of 
the complete minimal surface and linear asymptotes 
define twofold rotational axes* lying in the surface. 
The existence of plane lines of curvature and linear 
asymptotes may be readily established by analysing 
the behaviour of the Weierstrass function along such 
curves (Nitsche, 1975, p. 160). In this section we 
derive conditions on the branch-point distribution 
{to~, bi}~'=l for a minimal surface specified by the func- 
tional form (14) or (15) to display these symmetries. 

The family of geodesic curves passing through a 
particular point on the surface has a local Gauss-map 
image consisting of the great-circle arcs common to 
the corresponding point on the unit sphere, which 
form a common set of generic circular arcs in the 
complex plane under stereographic projection. (Note 
that the Weierstrass representation of a minimal sur- 
face is only defined up to rigid translation and rotation 
of the surface and a change of the complex variable 
parametrizing it.) For the specific representation (1), 
the conditions 

(x , y , z ) (o3)=+(x , -y , z ) ( to )  (16) 

constrain the real axis (lm to = 0) to be the image of 
a line of curvature in the xz plane (positive sign), a 
mirror plane, or an asymptote along the y axis (nega- 
tive sign), a twofold axis. These conditions reduce 
respectively to 

R(O3) = +/~(to). (17) 

In either case these functional constraints are satisfied 
by the form (14) [or its modified form (15) if a 
flat-point image resides at infinity in the closed com- 
plex plane] only if the sets of branch points of equal 
order are conjugate invariant, that is, 

{o3,}= {to,}, b, constant. (18) 

Mirror symmetry in the xz plane, or twofold rota- 
tional symmetry along the y axis, thus requires that 
this symmetry condition be obeyed by the branch 
points. 

The presence of reflection planes or rotational axes 
in arbitrary directions on a minimal surface requires 

* Note that higher-order rotational axes lying wholly in the 
surface cannot be present if the surface is free of self-intersections. 
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further analysis. For a general surface orientation, 
the boundary geodesics of interest map onto general 
great-circle arc images in the complex plane. To 
analyse such a geodesic with respect to the representa- 
tion (1), consider an arbitrary great circle, defined by 
the plane through the sphere centre with normal 
?~ = ( r l l ,  /'!2, n3)  and corresponding to the circle In,to + 
(n, + in2)l = 1 in projection. Apply the transformation 

where 

w)= M to(w)], (19) 

M =  

and 

2 --  rll ?13 \ rl I 
n l  

l l - n 2  l - n 2  

- r l l  - n 2  - n 3  l 

! -- rll r13 _ /13 2 
n 3 1 

1 - n2 1 - n2 ] 

to = { - I n , -  i ( 1 -  n2)]w + n3}/{n3w+[n, + i ( 1 -  n2)]}, 

(20) 
which describes the rotation of the surface and the 
unit sphere such that the plane of interest rotates into 
the XZ plane and the associated bilinear function 
maps the projected great-circle image onto the real 
axis (Im w = 0). Substitution of (1) and (20) into (19) 
yields 

f i(1 + w'2), 2w') (X, Y,Z)(w)=Re (1-w'2 ,  

w 

[2(1 - n2) ]2 
X 

{n3w'+[n, + i(1 - n 2 ) ] }  4 

xR\ n3w +[nl+i(1--n2) ] ] dw'. 

(21) 

Then from (16) and (17), the conditions 

(X, Y ,Z) (~)=+(X, -Y ,Z) (w) ,  (22) 

that an arc of the projected circle be the image of a 
line of curvature in the original plane (positive sign) 
or an asymptote directed along its normal line (nega- 
tive sign), take the general form 

1 (-[nl-i(1-n2)l@+n3~ 
{ n , # + [ n , + i ( 1  nz)]}4R --- - \ , , , ~ + [ , , ,  + ~ 7 ; , 7 ) ]  : 

1 =-+- 
{n3~, + [ n , -  i(1 - n 2 ) ] }  4 

X / ~ { - [ n , - i ( 1  - n2)w+ n,]~ 
n,--w+ [n~ + ~1 - n2S] J" (23) 

For the Weierstrass function (14) [with accom- 
panying condition (10)] to display this property, the 
constraint of conjugate invariance of the sets of trans- 
formed branch-point images of equal order, 

{( -[nl+i(1-n2)]toi+n3]~ 
.%-7 7+ , - 76  - .-7 : j 

= {-[ n__2, + i(lzn2)__]_~+_n_," ~ 
n3toi+[n,-i(1-n2)] J' 

b, constant, 

(24) 

is now supplemented by the additional requirements 

~'[( n3toi+tn,-i(l-n2)] ]b ' / (b '+ ' )=+ 1 (25) 

or, equivalently, 

[ b,/(b, + 1 ) ] arg { n 3 t o  i + [ n, -- i( 1 -- n2) ]} 
i=1 

'mTr for plane lines of curvature 
= [ (m + ½) 7r for linear asymptotes (m ~ Z). (26) 

This completes the analysis of twofold rotation axes 
and mirror planes in minimal surfaces of the regular 
class for which the Gaussian curvature is strictly 
negative at points whose normal vector is vertically 
upwards, i.e. which do not have a branch point at the 
point at infinity in the complete complex plane. 

In the case of a branch point residing at infinity, 
say to, = oo, for which the modified Weierstrass form 
(15) is appropriate, consider separately the situations 
n 3 # 0 and n 3 = 0. In the former, equation (15) [again 
subject to (10)] likewise possesses the property (23) 
only if the conditions (24) and (25) or (26) apply, 
where in the limit to, + ~ the index of the product 
and sum in (25) and (26) runs over the (n - 1) finite 
branch points to~, . . . ,  to,_~ only. The latter is the 
degenerate case in which the great circle is projected 
to a ray through the origin in the complex plane, 
rotated clockwise through an angle ~0 from the real 
axis, where exp (R0) = n2 + in1. On substitution of(15) 
and (10) into (23), the analogue of the condition (24) 
is now 

{exp (i~o)to,} = {exp (i~o)to,}, b, constant, (27) 

where only the finite branch points are considered 
(since the point at infinity is fixed in the transforma- 
tion). Similarly (25) [or (26)] now assumes the form 

exp[i2q~(b,,+2)/(b,,+l)]=+l (28) 

or, equivalently, 

t 
[(b, + 1)/(b.+Z)]mrr 

for plane lines of curvature (m ~ Z). (29) 
q~= [(b,,+l)/(b,+Z)](m+l)rr 

for linear asymptotes 
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Note there are 4 ( b , + 2 )  distinct permissible values 
of ¢ here (where b, >-0 is the order of the branch 
point under consideration) since (b, + 1) and (b, + 2) 
are coprime, with the corresponding rays tracing the 
(b. + 1) sheets of the Riemann surface pinned there. 
Thus there are a maximum of (b, +2)  plane lines of 
curvature (or linear asymptotes), intersecting at 
angles equal to some multiple of (b, +2 ) - l r r  at a fiat 
point of order b, on the minimal surface - a general 
result of differential geometry. 

In summary, the presence of reflection and rotation 
symmetries of the 0 = 0 (and 0 = zr/2) surface with 
Weierstrass functional form (14) or (15) is related to 
the symmetries of the branch-point distribution in the 
complex plane. 

So far we have not dealt with the question of 
translational periodicity of minimal surfaces in the 
regular class. In the final sections of this paper, we 
explore the range of branch-point distributions within 
this class that can lead to IPMS. 

6. Perpendicular rotational symmetry 

The existence of a rotational-symmetry axis through 
isolated points on the surface and normal to the 
surface may be examined in a similar manner. (Rota- 
tional axes inclined to the surface normal are indica- 
tive of self-intersections.) We use the transformed 
representation (21) for the case ii 3 ---- 0 to  seek rotation 
angles ~' about the Z axis through the point (whose 
image is projected to infinity) that maps the surface 
onto itself. Then the symmetry condition 

(X, Y , Z ) ( w ) = ( x , y , z ) ( w )  (30) 

is fulfilled by the form (14) [or (15) if b,, > 0], subject 
to the constraint (10), only if the sets of finite branch 
points of equal order are invariant under the rotation, 
that is, 

{exp (i~')to,} = {to,}, b, constant, (31) 

and satisfy the additional equation 

e x p [ i ~ ' ( b n + 2 ) / ( b . + l ) ] = l ,  (32) 

or, equivalently, 

q~'=[(b,+l)/(b,,+2)]2m'Tr ( m ' e  Z). (33) 

Thus the minimal surface may exhibit perpendicular 
rotational symmetry at angles of some multiple of 
(b ,+2)-~27r  about a flat point of order b,, so the 
maximum rotational symmetry order in this case is 
(b, ,+2),  as expected. The connections between the 
order of a branch point and the symmetry of the 
resulting minimal surface is discussed in some detail 
elsewhere (Fischer & Koch, 1989). 

On comparison of (29) and (33), it is clear that if 
the surface possesses plane lines of curvature (and /or  
linear asymptotes) then the angle of rotational sym- 
metry is twice that of the intersection of these curves 
- a geometrically obvious general result. However, 
the converse does not apply in general. For the family 
of Bonnet associate surfaces, corresponding to multi- 
plication of the Weierstrass function by the constant 
exp (iO), (22) is no longer satisfied while (30) is 
invariant. Hence, in this transformation, rotational 
symmetries are preserved in the absence of plane lines 
of curvature and linear asymptotes. [See, for example, 
the gyroid or G surface (Hyde & Andersson, 1985).] 

7. Spherical geodesic tessellating polygons 

To generate an IPMS, the Fliichenstiick which builds 
the surface must lie within a cell that tiles three- 
dimensional Euclidean space [R3] .  Consequently, the 
geodesic arcs bounding the Fliichenstiick are con- 
strained to lie in the faces (or along the edges) of 
such a cell. Arcs of the 0 = 0 (or 0 = rr/2) Fliichenstiick 
lying in planar faces or straight edges of the cell are 
plane lines of curvature or linear asymptotes, beyond 
which the surface (and its bounding cell) may be 
extended by mirror reflection or twofold rotation, 
respectively. (The surface is continued across arcs of 
the Fliichenstiick residing in curved faces or edges of 
the cell by a crystallographic operation involving 
translation, i.e. a screw rotation, glide reflection or 
pure translation.) Now consider bounding cells 
possessing at least one mirror plane or twofold axis. 
As the Gauss map of a plane line of curvature or 
linear asymptote is a great-circle segment, the image 
of such a Fliichenstiick is a continuous region of the 
Riemann surface over the unit sphere bounded by 
spherical geodesic arcs, which we call a generalized 
spherical geodesic polygon. This is immediately 
apparent in the case of a surface element entirely 
bounded by plane lines of curvature or linear 
asymptotes. More generally, the set of plane lines of 
curvature and/or  linear asymptotes define a circuit 
under identification of curve-segment endpoints 
related by a translation-lattice vector of the IPMS 
and, since normal vectors are invariant on translation, 
the result still applies. 

The operation of reflection (or rotation) of the 
Fliichenstiick in a bounding mirror plane (or about a 
bounding twofold axis) is then equivalent to reflection 
of the associated geodesic polygon on the unit sphere 
in the corresponding arc and thus to analytic continu- 
ation of the Weierstrass function to the region of its 
projected image in the complex plane. Repetition of 
this operation builds the fundamental translational 
unit of the IPMS and, in the process, the polygon 
tessellates the corresponding Gauss-map image of the 
fundamental unit; that is, the Riemann surface of the 
Weierstrass function over the unit sphere. Con- 
sequently, the Fl~ichenstiick must correspond to a tile 
of some number of sphere coverings. The branch- 
point structure is thus obtained from propagation of 
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the flat-p.oint images in this geodesic polygon by the 
repeated reflections of the tessellation. 

Clearly, the geometry of IPMS is intimately linked 
to the existence of tessellating polygons on the sphere. 
To generate IPMS in the regular class via their com- 
mon Weierstrass functional form (14) or (15), con- 
sider spherical geodesic polygons that tessellate a 
finite number of copies of the unit sphere. Next, assign 
a branch-point set that, under the kaleidoscopic 
action of the tessellation, yields a distribution 

b n {toi, i}~=~ satisfying (10), subject to the regularity 
proviso that only branch points of the same order are 
superposed. Each such possible branch-point distri- 
bution must then be analysed to verify whether the 
Riemann surface of the resulting Weierstrass function 
may be constructed from the tessellation and, if so, 
whether this structure permits consistent iden- 
tification of the congruence class of each polygon 
edge as the images of either plane lines of curvature 
or linear asymptotes. The pairs of equations necessary 
for a great-circle arc to be the image of such a curve 
are recalled and the appropriate requirement (24) or 
(27) (derived above) of branch-point symmetry is 
guaranteed for a distribution generated by a poly- 
gonal tessellation of the sphere; conditions (25) or 
(28) must then be satisfied for each arc in the family. 

8. Schwarz triangle tessellations 

A natural basis for tessellating polygons is the set of 
geodesic triangles which tile the sphere in a finite 
number of coverings. An exhaustive list of the fifteen 
basic triangles (one of which permits an infinity of 
subdivisions) was compiled last century by Schwarz 
(Erd61yi, Magnus, Oberhettinger & Tricomi, 1953). 

Consider the encompassing set of derivative tilings 
which reduce to Schwarz cases on symmetric sub- 
division (i.e. triangulation) of the generating unit. The 
vocabulary of possible Fliichenstiick images is defined 
for each member of the set by the polygons comprising 
a finite union of tiles, which tessellate some number 
of copies of this underlying tiling and are assigned 
branch points according to the following convention. 
If the basis tiling admits of a subdivision, with respect 
to which the branch points on the polygon are related 
by a symmetry, then we refer the polygon to the 
subdivided Schwarz-case derivative. Conversely, if 
the tiling is a subdivision of another case from which 
the polygon may be constructed and the branch-point 
set is not symmetry-related on subdivision, then we 
analyse this situation with reference to the coarser 
tiling. This ensures that, on repeated reflection of the 
polygonal unit, the resulting branch-point distribu- 
tion is identical for each sheet only if it is identical 
for each underlying tile. In this manner, the derivation 
of suitable branch-point distributions for IPMS in 
the regular class reduces to consideration of the per- 
missible allocation of branch points to the single tile 

Table 1. Schwarz tessellations corresponding 
polyhedra 

Schwarz  case Vertex angles /Tr  Assoc ia ted  p o l y h e d r o n  

I 
1 (~ ,  ~, 1 )  Dipyramids 

2 ' 3'  Triakis octahedron 

3 ' 3'  Triakis tetrahedron 

4 ' 3'  Hexakis octahedron 

5 ' 4'  Triakis hexahedron 

6 , ~, Hexakis icosohedron 

7 ' 3'  Triakis icosahedron 

8 ' 5'  Pentakis dodecahedron 

11 ( ~ , ~ ,  ~) Icosahedron 

to  

generating each Schwarz-case derivative. Further- 
more, these points must then be propagated from one 
tile to its neighbours by symmetry operations of the 
tessellation - namely edge reflection or composition 
of this with reflection in any existing internal sym- 
metry axes of the tile. 

All Schwarz cases for which the minimum number 
of coverings of the sphere by a tessellation exceeds 
one are then eliminated from consideration here, 
since they are incompatible with the regular class. 
The remaining cases are projections of the edges of 
standard polyhedra from their barycentres onto the 
concentric unit sphere. 

The simplest case, with polar angles (p /n)7r  divid- 
ing 2~r, is the image of the family of dipyramids, 
composed of 2n/p isosceles triangles, in particular, 
p/n =½ corresponds to the octahedron. The other 
eight cases are the images of the eight regular or 
vertically regular polyhedra with triangular faces 
meeting at a common dihedral angle (Coxeter, 1973; 
Williams, 1979). This information is summarized in 
Table 1, with the tessellations categorized into the 
four Coxeter groups. 

Within each such group, the first case listed is a 
subdivision of the other tilings, all of which have a 
vertex angle of the form (2/n)Tr, where n is an odd 
integer. After the assignment of an arbitrary set of 
branch points to the tile and symmetry operations of 
the tessellation to the two edges meeting at this vertex, 
consider the distribution thus generated on the 2n 
triangles on two sheets sharing the vertex. Pairs of 
superposed edges bear the same symmetry operation 
only if this is true of the generating edge pair, in 
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Table 2. Branch-point solutions 

Here ¢~ denotes  the empty set and the vertex-only solutions {{bj}}=,, 4 ,  4}  listed first in each case are  a b b r e v i a t e d  as {b,}~=,. 

Case 
number  (At, h2, h3) 

2 
3 
4 
5 
6 
8 

{bk} k =,,  {b}'}~_"t} 

{~, 2, 5}; {,t,, {i, l}, 4}, {{0, 1, l}, {1}, 4}, {{0, o, 2}, {2}, 4}, {{0, o, 1}, {3}, 4}; {4, 4, {~}} 
{0, 3, 7}, {0, 4, 4}, {0, 5, 3}, {0, 8, 2}, { 1, 5, 0}; { 4, {2}, 4}, {{0, O, 1 }, { 1}, 4} 
{0, 3, 1}; {4, {1}, 4} 
{0, 1, 3}, {0,4, O} 
{o, 1, !},{o, 2,o} 
{o, I, 0} 

(" 
4 2 '3 '  {0, 1, 0}, {0, O, 2} 

which case the branch points on the two sheets are 
superposed only if the original set is symmetric  with 
respect to the subdivision and hence permits analysis 
within the framework of  the first case. Hence, of  the 
fifteen Schwarz tessellations, only cases 1 (with polar  
angle 7r/n, n -> 2), 2, 4 and 6 are consistent with the 
required regularity of the Gauss -map covering. 

9. Branch-point distributions 

Thus far, we have used the Schwarz tilings as a basis 
for determining the Riemann surface branch-point  
distr ibutions which define Weierstrass functions of  
IPMS. Applicat ion of  the remaining necessary condi- 
tion (10) yields a finite set of possible such distribu- 
tions for the regular class. This condit ion is formu- 
lated by calculating the number  of  distinct images, 
under  the reflection operat ions generating the 
tessellation, of a branch point  on a single tile that 
may, in general, reside in the interior or on one of  
the edges or vertices. 

On considerat ion of a Schwarz spherical triangle, 
defined by vertex angles ( A t ,  /~2, •3) '/'/', the Gauss-  
Bonnet theorem implies that  the number  F of  tiles 
and the numbers  E and Vj of  edges and vertices of  
each type j = 1, 2, 3 per sheet in the resulting tessella- 
tion are given by 

F=S/A,  E=4/A,  Vj = 4Aj/A, (34) 

where 

A = 2  A j - 1  . (35) 
j i 

b 3 {b~}kN~_l and {b~'}~", denote the set Now let { j}j=~, 
of  orders of  the branch points distr ibuted at the 
vertices {Ajzr}3=t and on the edges and face, respec- 
tively, of  a single tile (where a zero order  indicates 
absence of  a branch point  at that site). Equat ion (10) 
becomes 

k~' b~, bJ + E  
bbj+l b~,+l j = l  =1 

H N" b l  
+ F ,Y~,= b~' + 1 - 4 .  (36) 

Insertion of (34) then gives the condit ion 

~ A .  bj ~' b~, 
j=l : b j + l + g = l b ~ , + l  

t! N" b l  
+2 Y~ (37) 

reflecting the weighting of  each branch-point  contri- 
but ion bi/(b~+ 1) by the angles hjrr, rr or 2rr, respec- 
tively, subtended by the tile at the point. 

Hence each ' regular '  IPMS generated by a Schwarz 
tiling of spherical triangles (as opposed to a derivative 
tiling thereof) corresponds to a non-negative integer 
set satisfying (37) for the case 1 (with polar  angle 
7r/n, n -> 2), 2, 4 or 6. Determinat ion of the solution 
sets in each case is s traightforward.  The fact that any 
positive integer b satisfies ½<-b/(b+l)<l yields 
bounds  on the allowable numbers  of each type of 
branch point and their respective orders, greatly sim- 
plifying the counting problem. For example,  in case 
4 of  Table 1, (35) implies that  A = ~, and hence there 
can be no branch points at the 7r/2 vertices, on any 
edges or in any faces (i.e. b~---b~, = b~' = 0); accord- 
ingly (37) reduces to 

4b2/(b2+ 1)+  3b3/(b3 + 1)=  2. 

Likewise the possibility of  branch points at both the 
17"/3 and 7r/4 vertices is excluded (i.e. b2 = 0 o r  b 3 = 0 ) ,  

leaving the two possibilities b2/(b2 + 1 ) = ½ o r  b3/(b  3 + 
1) = 2. As the solutions of  these equations are integral 
(namely b2 = 1 or b3=2) ,  they constitute the two 
permissible branch-point  distr ibutions for the 
Schwarz case 4. The exhaustive list of solution sets 
of  (37) for all of these cases is given in Table 2. Note  
that no non-trivial solutions exist in cases 2 and 6 
and in case 1 for n = 7 a n d  n - -9 .  

Each of  the solutions involving branch points on 
edges a n d / o r  faces yields a multiplicity of classes of  
possible IPMS given by the set of  distinct al locations 
of  the edge branch points and the choices of  the 
(symmetry)  operat ions defining the branch-point  
propagat ion over the three edges. 
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Concluding remarks 

In this paper we have derived necessary conditions 
for a complex function to give rise to an IPMS in the 
'regular' class via the Weierstrass equations. We have 
established that the question of existence of an IPMS 
in the regular class can be resolved by consideration 
of branch points alone. Strict constraints exist 
between the number and orders of the branch points 
specifying the complex (Weierstrass) function. Fur- 
thermore, the symmetries of the resulting IPMS can 
be deduced from the symmetries of the branch-point 
distribution, which are related to the underlying 
spherical tessellation. 

In paper II of this series, we shall use these distribu- 
tions to derive IPMS within the regular class explicitly 
and deduce the geometry and symmetries of the 
surfaces. 

APPENDIX 

The coefficient polynomials aM(to) in (3) can, without 
loss of generality, be expressed in the form 

a~(to)=otMPM(to) I-I ( to-to,)q",  (A1) 
i=1  

in which any roots in the set {toi}~ are explicitly 
extracted. Hence qM~->0 and the polynomial P~(to) 
is the product of all remaining factors of aM(to). 
Furthermore, we may assume that the constants as 
and ao are non-zero. It was noted in the text that 
R(to) is necessarily non-zero on C, hence we may 
assume that the polynomial ao(to) is likewise non-zero 
on C and thus ao(to)---ao. Also, the roots of the 
leading coefficient a~ (to) are precisely the set of points 
{ t o / }  i % 1 above which the Riemann surface is branched, 
so P , ( to ) -  1 and q~i >- 1. 

As stated in the derivation of (5), no loss of general- 
ity results from assuming that the point at infinity in 
the closed complex plane is not a flat-point image 
and, moreover, that (3) yields s distinct values of the 
constant y~. Hence the full polynomial degree must 
be preserved in the limit to ~ oo, implying that the first 
and last terms of the summation in (3) must be of 
equal asymptotic order (namely zero), with all inter- 
mediate terms of no larger (that is, positive) order. 
Now (5) and (A1) give the asymptotic forms 

aM(to)R ~ ~ ~'Mro~~ "~ M to'(degPM+~q~'qM'--4M)' , to  ---> O0 

(where deg PM denotes the degree of the polynomial 
PM), which thus impose the constraints 

f q,i = 4s, (A2) 
i = l  

f qM~ <-4M-degPM, M = I , . . . , S - 1 .  (A3) 
i=1  

We address the asymptotics at the flat-point images 
in an identical manner, now introducing the assump- 
tion of 'regularity'. Since only branch points, of order 
bi, reside on the Riemann surface above toi, substitu- 
tion of the asymptotic form (4) into (3) must result 
in s solutions for % (counting with multiplicity). 
Hence as to ~ to~, again the first and last terms of the 
summation in (3) must be of equal order (zero) and 
all intermediate terms of no larger (that is, negative) 
order. Equations (4) and (A 1) supply the asymptotics 

aM(to)RM ~ a~YY PM(to,) fi (to,--toj) 
j = l  

X ( 0 )  - -  O) i )  [ q M i - M a i / ( b i + l ) ] ,  O) "~ O) i 

and thus the conditions 

q,,= sa,/(b,+ 1), (A4) 

q~,>-Ma,/(b,+l),  M = l , . . . , s - 1 .  (A5) 

Combination of (A2) and (A4) gives 
rl 

Y, a,/(b,+ 1)=4,  (A6) 
i = l  

which in conjunction with the inequalities (A5) 
implies 

f qM,-->4M, M = 1 , . . . ,  s -  1. (A7) 
i=1  

Consistency between the inequalities (A3) and (A7) 
then demands 

deg PM = O ~  PM = 1 

and (A8) 

f qMi=4M, M = 0 , . . . , s ,  
i = 1  

from which (A5) and (A6) yield 

qM,= Ma,/(b,+ 1), M = O , . . . , s .  (A9) 

Hence, via (A1), (A8) and (A9), 

aM(to)RM=aM ( t o - - t o i ) a ' / ( b ' + l ) R  , 

i = 1  

so the defining equation (3) reduces to the constant- 
coefficient polynomial equation 

f aMZ M =0, Z= fi (to--to~)"'/(b'+~'R. 
M = O  i = l  

Thus z is a constant complex number and the Weier- 
strass function of an IPMS in the 'regular' class has 
the form 

R(to) = z fi ( to_~i)- . , / (b +,), 
i = l  

subject to the constraint (A6). 
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Low-Density Elimination 
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Abstract 

A density-modification procedure for phase extension 
and refinement is described which replaces all density 
less than one-fifth of the height of a light-atom peak 
by zero. Its effectiveness is demonstrated by applica- 
tions to a small and a medium-size protein structure. 
With high-resolution data, for the small protein, it is 
possible to extend and refine from 3 to 1 A with a 
mean phase error less than 30 ° . Successful phase 
extension from 4/~ is also possible. In general it is 
shown that phase extension to high resolution gives 
less error than extension to lower resolution. It has 
also been shown that for a small protein it is possible 
to obtain an ab initio solution of the structure by 
refining from a complete set of random phases for 
all reflexions. 

The basis of direct methods 

Most direct methods consist of mathematical pro- 
cedures carried out in reciprocal space which are 
designed to produce sets of phases satisfying par- 
ticular constraints. The first powerful and generally 
applicable direct methods were those based on the 

* Present address: Department of Physics, Kyushu University, 
Hakozaki 6-chome, Higashi-ku, Fukuoka, Japan. 
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tangent formula, introduced by Karle & Hauptman 
(1956), 

tan ~0(h) 

= {~ [E (k )E(h -k ) ]  sin [~o(k) + ~o(h- k)]} 

I } -1 
× ~ IE(k)E(h--  k)l cos [~(k) + ~ ( h -  k)] 

(1) 
Although the tangent formula was derived by Karle 

& Hauptman from algebraic and statistical consider- 
ations, it can be given a real-space physical interpreta- 
tion. The phase given by the tangent formula is just 
that which would be obtained if an E map, calculated 
with current phase estimates, was squared and the 
phase, ~0(h), of the Fourier coefficient of index h of 
the squared map was taken. 

The precursor of the tangent formula, the three- 
phase relationship 

~ ( h ) -  ~o(k)-~o(h-k) ~-0 (modulo 27r) (2) 

was derived by Cochran (1955) from the condition 
that a set of correct phases should give an electron 
density map for which ~v p3 d V is a maximum. This 
condition, somewhat intuitive in origin, expresses the 
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